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Chapter 1

Three-Dimensional Space

Definition 1.1. (Vector Additions and Scalar Multiplications) Let a = ⟨a1, a2, a3⟩ and b = ⟨b1, b2, b3⟩ be two vectors in R3, and
c be a scalar. Then

a+ b = ⟨a1 + b1, a2 + b2, a3 + b3⟩ (Addition)

ca = ⟨ca1, ca2, ca3⟩ (Scalar multiplication)

Negative of a vector is −a = (−1)a.
Difference between vectors is a− b = a+ (−b).

Lemma 1.2. The following properties hold:

1. Commutative rule: a+ b = b+ a

2. Associative rule: (a+ b) + c = a+ (b+ c)

3. Distributive rule: (λ+ µ)a = λa+ µa and λ(a+ b) = λa+ λb

Definition 1.3. (Dot product) Let a = ⟨a1, a2, a3⟩ and b = ⟨b1, b2, b3⟩. The dot product between vectors a and b is defined as:

a · b = a1b1 + a2b2 + a3b3

Definition 1.4. (Length) Let a = ⟨a1, a2, a3⟩. The length of vector a is given by:

|a| =
√
a · a =

√
a21 + a22 + a23

Lemma 1.5. The following properties hold:

1. a · b = b · a

2. (a+ b) · c = a · c+ b · c

3. (λa) · b = λ(a · b)

4. 0 · a = a · 0 = 0

Theorem 1.6. Let a = ⟨a1, a2, a3⟩ and b = ⟨b1, b2, b3⟩ be two vectors in R3, and θ be the angle between them. Then:

a · b = |a| |b| cos θ

Corollary 1.7. Two non-zero vectors a and b are orthogonal if and only if a · b = 0.
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4 CHAPTER 1. THREE-DIMENSIONAL SPACE

Definition 1.8. (Projection) Let a and b be two vectors in R3. The scalar projection of b onto a is the signed length:

compa(b) =
a · b
|a|

The vector projection of b onto a is a vector:

proja(b) = compa(b)
a

|a|
=

a · b
|a|2

a

Definition 1.9. (Cross product) Let a = a1i+ a2j+ a3k and b = b1i+ b2j+ b3k be vectors in R3 with angle θ between them.
The cross product a× b between a and b is defined as a vector such that

1. Length |a× b| = |a| |b| sin θ

2. The cross product a× b is orthogonal to both a and b

3. Direction is determined by the right-hand grab rule

Lemma 1.10. The following properties hold:

1. a× b = −b× a

2. (a+ b)× c = a× c+ b× c

3. a× 0 = 0

4. a× a = 0

Theorem 1.11. (Determinant Formula of cross product) Let a = a1i+ a2j+ a3k and b = b1i+ b2j+ b3k. Their cross product is
given by

a× b =

∣∣∣∣∣∣
i j k
a1 a2 a3
b1 b2 b3

∣∣∣∣∣∣ = (a2b3 − a3b2)i− (a1b3 − a3b1)j+ (a1b2 − a2b1)k

Lemma 1.12. The following properties hold:

1. Area of the parallelogram formed by a and b is |a× b|.

2. Area of the triangle formed by a and b is 1
2 |a× b|

3. a× b = 0 if and only if a and b are parallel.

4. Volume of the parallelepiped spanned by a, b, and c is |a · (b× c)|.

Definition 1.13. (Parametric equation of a line) Suppose a line L passes through the point P0(x0, y0, z0) and is parallel to a
vector v = ⟨v1, v2, v3⟩. The parametric equation is given by

x = x0 + tv1

y = y0 + tv2

z = z0 + tv3

In vector form, it is given by
r(t) = ⟨x0 + tv1, y0 + tv2, z0 + tv3⟩

Theorem 1.14. Given two lines in R3. There are 4 possible relative positions.

1. Same (Same direction and have common points)

2. Parallel (Same direction but no common points)

3. Skew (Different direction and no common points)

4. Intersect (Different direction but have common point)
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Definition 1.15. Given a plane P with a normal vector n = ⟨a, b, c⟩. Assume that it passes through P0(x0, y0, z0). Then the
equation of the plane is given by

ax+ by + cz = ax0 + by0 + cz0

Theorem 1.16. Given two planes in R3. There are 3 possible relative positions.

1. Same (Same normal vector and have common points)

2. Parallel (Same normal vector but no common points)

3. Intersect (Different normal vector)

Definition 1.17. (Parametric equation of a curve) A parametric equation of a curve is of the form
x = f(t)

y = g(t)

z = h(t)

r(t) = f(t)i+ g(t)j+ h(t)k

Definition 1.18. (Derivatives of parametric curves) The derivative of a parametric curve is given by

r′(t) = f ′(t)i+ g′(t)j+ h′(t)k

Lemma 1.19. The following properties hold:

1. d
dt (f(t)u(t)) = f ′(t)u(t) + f(t)u′(t))

2. d
dt (u(t) · v(t)) = u′(t) · v(t) + u(t) · v′(t)

3. d
dt (u(t)× v(t)) = u′(t)× v(t) + u(t)× v′(t)
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Chapter 2

Partial Differentiations

Definition 2.1. (Limit) Given a function f(x, y) and a point P0(x0, y0). We say that lim(x.y)→(x0,y0
)f(x, y) = L of for all ε > 0,

there exists δ > 0 such that
|f(x, y)− f(x0, y0)| < ε

for all P (x, y) such that √
(x− x0)2 + (y − y0)2 < δ

Theorem 2.2. (Squeeze Theorem) Given functions f, g, h. If f(x, y, z) ≤ g(x, y, z) ≤ h(x, y, z) and suppose that

lim
(x,y,z)→(a,b,c)

f(x, y, z) = lim
(x,y,z)→(a,b,c)

h(x, y, z) = L

Then
lim

(x,y,z)→(a,b,c)
g(x, y, z) = L

Definition 2.3. (Continuity) Given a function f(x, y). A function f is continuous at (x0, y0) if

lim
(x,y)→(x0,y0)

f(x, y) = f(x0, y0)

Function f is continuous if it is continuous at all points in the domain.

Definition 2.4. (Level curve) Given a function f(x, y). Fix h ∈ R. The level curve of f at h is given by f(x, y) = h.
Combining multiple level curves give us a contour map.

Definition 2.5. (Partial derivatives) Given a function f(x, y). The partial derivatives of f(x, y) with respect to x and y are:

fx(x, y) =
∂

∂x
f(x, y) = lim

h→0

f(x+ h, y)− f(x, y)

h
fy(x, y) =

∂

∂y
f(x, y) = lim

h→0

f(x, y + h)− f(x, y)

h

Definition 2.6. (Second partial derivatives) The second partial derivatives are defined as follows:

fxx =
∂2f

∂x2
=

∂

∂x

∂f

∂x
fxy =

∂2f

∂y ∂x
=

∂

∂y

∂f

∂x
fyx =

∂2f

∂x ∂y
=

∂

∂x

∂f

∂y
fyy =

∂2f

∂y2
=

∂

∂y

∂f

∂y

Theorem 2.7. (Mixed Partial Theorem) Given a function f(x, y). If at least one of the second partials fxy and fyx exists and is
continuous, then fxy = fyx.

Lemma 2.8. (Chain rule) Given a function f(x, y, z), where x, y, z are functions of t. Then we have

df

dt
=

∂f

∂x

dx

dt
+

∂f

∂y

dy

dt
+

∂f

∂z

dz

dt

Definition 2.9. (Tangent plane) Given a differentiable function f(x, y, z). Assume that the function passes through P0(x0, y0, z0)
Let ∇f = fxi+ fyj+ fzk. The tangent plane of f at P0 is given by

fx(x0, y0, z0)(x− x0) + fy(x0, y0, z0)(y − y0) + fz(x0, y0, z0)(z − z0) = 0
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8 CHAPTER 2. PARTIAL DIFFERENTIATIONS

Definition 2.10. (Linear approximation) Given a function f . The linear approximation of f at (x0, y0) is

L(x, y) = f(x0, y0) + fx(x0, y0)(x− x0) + fy(x0, y0)(y − y0)

Definition 2.11. (Directional derivative) Given a unit direction u−u1i+u2j and a function f(x, y). The directional derivative
of f in the direction of u at point (x, y) is

Duf(x, y) =
d

dt
f(x+ tu1, y + tu2)

∣∣∣∣
t=0

Definition 2.12. (Gradient vector) Given a differentiable function f(x, y). The gradient vector of f at (x, y) is

∇f(x, y) =
∂

∂x
f(x, y)i+

∂

∂y
f(x, y)j

Theorem 2.13. Given a differentiable function f(x, y). The directional derivative of f at (x, y) in the unit direction u is given by

Duf(x, y) = ∇f(x, y) · u

Theorem 2.14. Given a differentiable function f(x, y). Let (a, b) be a point on the level curve f(x, y) = c. The gradient vector
∇f(a, b) is orthogonal to the level curve f(x, y) = c at the point (a, b).

Theorem 2.15. Given a differentiable function f(x, y). The equation of the tangent plane for the graph z = f(x, y) at the point
(x0, y0, f(x0, y0)) is given by

z = f(x0 + y0) + fx(x0, y0)(x− x0) + fy(x0, y0)(y − y0)

Definition 2.16. (Critical point) Given a differentiable function f(x, y). A point (a, b) is a critical point if the tangent plane
at (a, b) to the graph z = f(x, y) is horizontal. This means that fx(a, b) = fy(a, b) = 0 (∇f(a, b) = 0)

Theorem 2.17. (Second derivative test) Let f(x, y) be a differentiable function and (x0, y0) be a critical point of f . Suppose that

D(x, y) =

∣∣∣∣fxx(x, y) fxy(x, y)
fyx(x, y) fyy(x, y)

∣∣∣∣
If D(a, b) > 0 and fxx(a, b) > 0, then (a, b) is a local minimum.
If D(a, b) > 0 and fxx(a, b) < 0, then (a, b) is a local maximum.
If D(a, b) < 0, then (a, b) is a saddle point.
Otherwise, it is inconclusive.



Chapter 3

Multiple Integrations

Theorem 3.1. (Fubini’s Theorem for rectangular regions) Let f(x, y) be a continuous function over a rectangle region x ∈ [a, b]
and y ∈ [c, d]. Then ∫ d

c

∫ b

a

f(x, y) dx dy =

∫ b

a

∫ d

c

f(x, y) dy dx

Theorem 3.2. (Fubini’s Theorem for general regions) Let R be a region on the xy-plane and f(x, y) be a continuous function on
R. Then ∫∫

R

f(x, y) dx dy =

∫∫
R

f(x, y) dy dx

Theorem 3.3. Let f be a continuous function. We change the coordinate system from (x, y, z) to (u, v, w). We have

dx dy dz =

∣∣∣∣ ∂(x, y, z)∂(u, v, w)

∣∣∣∣ du dv dw
where

∣∣∣ ∂(x,y,z)∂(u,v,w)

∣∣∣ is the Jacobian determinant ∣∣∣∣ ∂(x, y, z)∂(u, v, w)

∣∣∣∣ =
∣∣∣∣∣∣
∂x
∂u

∂x
∂v

∂x
∂w

∂y
∂u

∂y
∂v

∂y
∂w

∂z
∂u

∂z
∂v

∂z
∂w

∣∣∣∣∣∣
Theorem 3.4. Let x = r cos θ and y = r sin θ. Under polar coordinates (r, θ), we have∫∫

R

f(x, y) dA =

∫∫
R

f(r cos θ, r sin θ)r dr dθ

Theorem 3.5. Given a function f(x, y). The surface area with equation z = f(x, y) in region D is given by∫∫
D

√
(fx(x, y))2 + (fy(x, y))2 + 1 dA

Theorem 3.6. Let x = r cos θ, y = r sin θ. Under cylindrical coordinates (r, θ, z), we have∫∫∫
D

f(x, y, z) dV =

∫∫∫
D

f(r cos θ, r sin θ, z)r dr dθ dz

Theorem 3.7. Let x = ρ sinϕ cos θ, y = ρ sinϕ sin θ, z = ρ cosϕ. Under spherical coordinates (ρ, θ, ϕ), we have∫∫∫
D

f(x, y, z) dV =

∫∫∫
D

f(ρ sinϕ cos θ, ρ sinϕ sin θ, ρ cosϕ)ρ2 sinϕdρ dθ dϕ
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Chapter 4

Vector calculus

Definition 4.1. (Line integral of vector fields) Given a continuous vector field F(x, y, z) and a path C which is parametrized
by r(t) and t ∈ [a, b]. The line integral of F over C is∫

C

F · dr =

∫ b

a

F · r′(t) dt

Definition 4.2. (Conservative vector field) A vector field F is conservative if and only if it is in the form of F = ∇f where f is
a scalar function. The function f is the potential function of the vector field F.

Theorem 4.3. Given a conservative vector field F = ∇f , where f is a potential function. Along any path C connecting from
point P0(x0, y0, z0) to point P1(x1, y1, z1), the line integral is given by∫

C

F · dr = f(x1, y1, z1)− f(x0, y0, z0)

Definition 4.4. (Closed path integral) Given a continuous vector field F and a path C which is parametrized by r. If C is a
closed path, the line integral of F over C is ∮

C

F · dr

Corollary 4.5. For a conservative vector field F, if C1 and C2 are two paths with the same initial and final positions, then∫
C1

F · dr =

∫
C2

F · dr

Moreover, if C is a closed path, then ∮
C

F · dr = 0

Definition 4.6. (Curl) Given a vector field F = Fxi+ Fyj+ Fzk. The curl of the vector field F is given by

∇× F =

(
∂

∂x
i+

∂

∂y
j+

∂

∂z
k

)
× (Fxi+ Fyj+ Fzk)

=

∣∣∣∣∣∣
i j k
∂
∂x

∂
∂y

∂
∂z

Fx Fy Fz

∣∣∣∣∣∣
=

(
∂Fz

∂y
− ∂Fy

∂z

)
i+

(
∂Fx

∂z
− ∂Fz

∂x

)
j+

(
∂Fy

∂x
− ∂Fx

∂y

)
k

Definition 4.7. (Simply-connected regions) A region Ω is simply-connected if Ω is connected and every closed loop in Ω can
be contracted to a point continuously without leaving the region Ω.

11



12 CHAPTER 4. VECTOR CALCULUS

Theorem 4.8. (Curl test) Given a vector field F is defined and differentiable on a region Ω.

1. If F = ∇f for some scalar function f defined on Ω, then ∇× F = 0 on Ω.

2. If ∇× F = 0 and Ω is simply-connected, then F = ∇f for some scalar function f defined on Ω.

Definition 4.9. (Simple closed curves) A curve C is a simple closed curve if the two endpoints coincide and it does not intersect
itself at any point other than the endpoints.

Theorem 4.10. (Green’s Theorem) Let C be a simple closed curve in R2 which is counter-clockwise oriented. Suppose the curve
C encloses region R. Let F(x, y) be a vector field which is defined and differentiable at every point in R. Then∮

C

F · dr =

∫∫
R

(∇× F) · k dA

Definition 4.11. (Surface integrals) Given a surface S parametrized by r(u, v) with u ∈ [a, b] and v ∈ [c, d], and a continuous,
scaled-valued function f(x, y, z). The surface integral of f over the surface S is∫∫

S

f dS =

∫ d

c

∫ b

a

f(r(u, v))

∣∣∣∣ ∂r∂u × ∂r

∂v

∣∣∣∣ du dv
Definition 4.12. (Surface flux) Given a vector field F and a surface S. The surface flux of F through S is∫∫

S

F · n̂ dS

where n̂ is the unit normal vector to S at each point.

Theorem 4.13. Let r(u, v), with u ∈ [a, b] and v ∈ [c, d], be a parametrization of a surface S. The surface flux of a vector field F
through S can be computed by ∫∫

S

F · n̂ dS = ±
∫ d

c

∫ b

a

F ·
(
∂r

∂u
× ∂r

∂v

)
du dv

where the sign depends on the chosen convention of n̂.

Definition 4.14. (Divergence) Given a differentiable vector field F = Fxi+ Fyj+ Fzk in R3. The divergence of F is given by

∇ · F =
∂Fx

∂x
+

∂Fy

∂y
+

∂Fz

∂z

Theorem 4.15. Let F be a vector field. Then
∇ · (∇× F ) = 0

We can use this to detect whether a vector field is not a curl of another vector field.

Theorem 4.16. (Stokes’ Theorem) Let S be an orientable, simply-connected surface in R3, and C be the boundary curve of the
surface S. Suppose F is a vector field which is defined and differentiable on the surface S, then∮

C

F · dr =

∫∫
S

(∇× F) · n̂ dS

where n̂ is the unit normal vector to S, with direction determined by the right-hand rule.
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